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Napier’s main application:  
spherical trigonometry 

Urs Dietrich and Kurt Girstmair 

Abstract 
The present article is meant as a historically and mathematically self-contained 

introduction to Napier’s contribution to spherical trigonometry. Whereas his 
logarithms have been highlighted by many modern expositors, his trigonometric 

results have been abandoned to some degree. Napier himself, however, considered 

trigonometry as the main field of application of logarithmic computations. 

Although much of our material stems from Braunmühl’s Geschichte der 
Trigonometrie, we also present some new or scarcely known details. 

Introduction 
John Napier’s name is commonly connected with the invention of logarithms, a 

merit he shares with Jost Bürgi. He is also regarded as a pioneer of the concept of 

mathematical functions. His role in these two fields has been highly valued in many 
publications — in particular, in the contributions to the present volume, of course. 

Napier’s logarithms totally overshadow his achievements in spherical trigonometry. 
Napier himself, however, considered trigonometric problems as the main application of 

his logarithmic method. This becomes evident by the fact that he published his 
trigonometric results together with his theory of logarithms, for instance, in his 

Constructio (see [8]). 

It seems that the only complete survey of his trigonometric contributions can be 

found in the second volume of Braunmühl’s Geschichte der Trigonometrie [3] of 1903. 
Besides the disadvantage of being written in German, Braunmühl’s work takes it for 

given that the reader is well versed in spherical trigonometry. This is, of course, 
coherent with the important role of this matter in the higher education of the beginning 

twentieth century. The chronological structure of Braunmühl’s exposition also implies 
that the discussion of important forerunners of Napier (such as Regiomontanus) is 

scattered over a number of places. 

The aim of this article is a reasonably self-contained presentation of Napier’s 

trigonometric work. Although we are deeply indebted to Braunmühl, we hope to 
contribute some new or scarcely known details, for instance, a remarkable flaw in 

Napier’s Constructio (see Section 9). 

Our discussion is based on the understanding of spherical trigonometry that was 
common in Napier’s time. Hence it is not completely systematic and not without gaps 

from a modern viewpoint. For instance, some problems would require a distinction 
between acute and obtuse triangles — which we omit, restricting ourselves to a typical 

case. This restriction becomes most evident in Sections 6 and 7. 
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The present article is more or less a translation of [5]. It is published with kind 

permission of Springer Verlag. 

1. Spherical trigonometry 
Up to the age of the Renaissance trigonometry has been, almost exclusively, an 

auxiliary science of astronomy. So its natural frame is the celestial sphere, whose center 
is the earth. The latter can be imagined as a tiny ball, almost a point only. The celestial 

sphere revolves around the axis formed by the line through the north and the south 
poles. One revolution lasts about 24 hours. If we connect three points on the said sphere 

by arcs of great circles, we obtain a spherical triangle. A typical example of such a 
triangle has its corner points in the north pole A, the zenith B of an observer on the 

northern hemisphere and a third point C which marks the position of some star under 
observation. The meridian arcs c (meridian of the observer) and b (meridian of the star 

in question) form, together with the arc a of the great circle connecting B and C, the 

sides of the triangle. These sides have to be understood as the angles under which the 
terrestrial observer sees A, B, and C. Suppose, for instance, the geographic latitude of the 

observer is 29 degrees. Then c = 90° − 29° = 61°.  

 

 
 

Figure 1 

In addition, a spherical triangle also has angles in the proper sense of the word. In 

Figure 1, we obtain the angle α at the corner A on extending the side c to 90° from A to B′ 

and, in the same way, the side b to 90° from A to C′. The angle that measures the side a′ of 

the triangle AB′C′ (this side is a part of the celestial equator) is the angle α in question. It 

could also be defined as the angle formed by the tangents of the meridians in A. Hence 

we may write a′ = α. 

The fundamental theorem of spherical trigonometry is the cosine rule, which takes 

two different forms (see [2] or [14], p. 18 ff.). The cosine rule for sides reads 

 cos a = cos b cos c + sin b sin c cos α. (1) 
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Accordingly, our observer can find the angle α provided that he has measured the 

sides a, b, and c. Thereby, he knows the difference in longitude between his own 

position and the point on the earth situated below the star C. If the star’s position at a 

given time is known, the longitude of the observer can be determined. 

Of course, the quantities a,b,c and α do not play a distinguished role. The identity (1) 

remains valid under a cyclic permutation of the sides a,b,c and, simultaneously, the 
angles α,β,γ. This identity, however, renders more than the computation of an angle 

from the sides of the triangle. We can also compute a side of the triangle from the two 
remaining sides and the angle included by them (for example, a from b, c and α). Even 

the case of two given sides and an angle opposed to one of these sides can be treated by 
means of (1). Suppose we know a,b, and α. Then (1) leads to a quadratic equation for 

cosc, if we use  

 sin 𝑐 =  √1 − cos2 𝑐   (2) 

At this point one should observe that all sides and all angles of the triangle take 

values strictly between 0° and 180°. Thus, sinc is always positive, and so it suffices to 
take the positive root in (2). The resulting quadratic equation may have two 

geometrically meaningful solutions, occasionally, however, none. 

In contrast with plane triangles, the sum α + β + γ in a spherical triangle is always 

greater than 180° (and less than 540°, since each angle is less than 180°). This has the 
effect that a spherical triangle is completely given by its angles. The cosine rule for 

angles 

 cos α = −cos β cos γ + sin β sin γ cos a (3) 

yields the solution of the remaining cases of a spherical triangle, i.e., three given 
angles or two angles and the side adjacent to both of them. The case of two angles and a 

side opposed to one of them again leads to a quadratic equation, with the aid of (2). 

A proof of the cosine rule can be found in the pretty booklet [14] or in more 

extensive works like [12] and [13]. In Section 6 we shall see that both versions (1) and 
(3) of this rule are equivalent in an elementary way. 

2. Napier’s preconditions 

Spherical trigonometry is a basic tool in the Almagest, Ptolemy’s great astronomical 

handbook (about 150 AD). But in antiquity its appearance differs very much from that 
of modern times (see [10], p. 64 ff.). Greek mathematics does not work with formulas, 

but phrases its results in words, often in the form of rather involved periods. This also 
holds for proofs, of course. Hence it is quite important — also for a modern student of 

Greek mathematics — that every theorem and every proof is accompanied by drawings. 
In addition, the Greeks have only one alphabet, namely that of Greek capital letters, to 

denote mathematical objects. Accordingly, points are denoted by capital letters, line 

segments (or segments of circular arcs) by pairs of letters denoting their endpoints. 
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This tradition is dominant well into the seventeenth century; Napier’s main works 

(published 1614 and 1619) are no exceptions from this rule. 

For our purpose it may be instructive to see a rather literal translation of the cosine 

rule (1) for sides from Regiomontanus’ book “De triangulis omnimodis” (see [11], p. 
127; first printed in 1533, almost 60 years after the death of its author). 

In every spherical triangle consisting of great circular arcs, the ratio of the versed sine 
of an arbitrary angle to the difference of two other versed sines, one of which belongs to 
the side that subtends that angle, whereas the other belongs to the difference of the arcs 
attached to this angle, equals the ratio of the square of the sine of the right angle to the 
rectangle formed by the sines of the arcs attached to the said angle. 

Regiomontanus illustrates this theorem by a drawing. We use Figure 1 for this 
purpose. Sine in Regiomontanus’ sense (also called the right sine) means R·sin in our 
sense, where R is the (rather large) radius of the sphere in question. Accordingly, the 
sine of the right angle equals R. The versed sine stands for R·(1−cos). Hence 
Regiomontanus says that the following identity of ratios holds: 

 
 R(1 – cos α) : (R(1 – cos a) − R(1 − cos(b − c))) = R2 : (R sin b · R sin c) (4) 

If we cancel the radii R on both sides and simplify the difference in the denominator 
on the left hand side, we obtain 

(1 – cos α) : (cos(b − c) – cos a) = 1 : (sin b  sin c), 
which is equivalent to 

 sin b sin c – sin b sin c cos α = cos(b − c) – cos a. (5) 

By means of the identity cos(b − c) = cos b cos c + sin b sin c, formula (5) is transformed 
into (1). 

Regiomontanus applies his theorem to the case when three sides are given and one 
angle shall be computed. He also indicates that, if three of the four quantities a,b,c,α are 

known, the remaining one can be computed by means of (4). In Regiomontanus’ case of 
three given sides, formula (5) yields 

                                sinvers α  =  
𝑠invers 𝑎 −sinvers (𝑏− c)

sin 𝑏 sin c
,         (6) 

where we have written, following Regiomontanus, sinvers instead of 1 − cos. 

Evaluating the right hand side of (6) requires subtractions, but also one 

multiplication and one division. The latter operations are rather toilsome if multi-digit 

numbers are involved (as is the case with astronomical computations). In Napier’s time 
astronomers would have used the identity 

 sin a sin b = (cos(a − b) − cos(a + b))/2, (7) 

for the denominator of (6). Thereby, the multiplication is replaced by an addition, a 

subtraction, and a bisection. This kind of simplification was called prosthaphairesis (a 
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term going back to the almagest), which can be translated by “addition and 

subtraction”. 

One should be aware of the fact that prosthaphaeresis was not a trivial process for 

Napier’s contemporaries, since they had no formulas at hand. In particular, the identity 
(7) used here was disposable only in the vestment of a clumsy theorem (see [3], vol. 1, 

p. 197 ff.). 

3. Logarithms and trigonometry 
In order to simplify calculations of the kind just discussed, John Napier invented his 

logarithms — the name also goes back to him. He published his system of logarithms in 
two booklets, whose titles were Mirifici logarithmorum canonis descriptio (1614) and 

Mirifici logarithmorum canonis constructio (which appeared in 1619 when Napier was 
already dead). Both tracts together were republished in 1620, see [8]. This edition is 

generally accessible in digitized form (see references). Therefore, we always use the 

edition [8] and quote Napier’s tracts under the names of Descriptio and Constructio. 

Napier’s tracts also contain his results in trigonometry. As we mentioned above, 

Napier considered trigonometry as the main field of application of his logarithms. This 

explains why his results in both fields were published together. 

Napier’s objective is continuous logarithmic computation in spherical trigonometry. 

To this end he has to reshape the respective formulas in such a way that they consist 
only of products and quotients of values of trigonometric functions — but not of sums or 

differences of these values. Then the application of logarithms reduces the computation 
to additions and subtractions. But we have to bear in mind that formulas belong to our 

mathematical world; Napier did not have this tool at his disposal. It does not mean a 
derogation of his ideas, if we replace his somewhat unwieldy logarithm (see [1], [6]) by 

the decadic logarithm log, which was introduced by Henry Briggs (1561–1630) shortly 
after. Accordingly, log 1 = 0, log 10 = 1, log 100 = 2 and so on. In addition, the radius R of 

the foregoing section will always be 1. 

Braunmühl rightly says that Napier undertook a complete reorganization of 

spherical trigonometry (see [3], vol. 2, p. 12). This reorganization, however, suffers 
from the fact that Napier also feels indebted to the users of prosthaphaeresis, with the 

effect that he presents logarithmic theorems together with equivalent prosthaphaeretic 
results — a feature that becomes most obvious in the Constructio. This fact detracts 

from Napier’s main objective, although it is quite understandable against the 
background of his time. 

4. Napier’s rules 

In book II, chapter IV, of the Descriptio Napier formulates the rules for a right 

spherical triangle which bear his name. Let ABC be a spherical triangle with a right 
angle at C. The natural determiners of this triangle are (if we omit γ = 90°) a, b, α, c, β, in 

this order. Two neighbouring determiners in this series are called adjacent; and finally, 
β and a are also considered as adjacent. 
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Figure 2 

The legs a and b of the right triangle are now replaced by their complements  

 �̅� = 90° − a,  �̅� = 90°− b . Then �̅�, �̅�, α, c, β are called the circular parts (Napier says 

“partes circulares”) of the triangle. Now Napier’s rules can be phrased as follows (see 

[8], Descriptio, p. 33): 

(a) The cosine of each (circular) part equals the product of the cotangents of its adjacent 
parts. 

(b) This cosine is also equal to the product of the sines of the non-adjacent parts. 

 

For instance, let us consider c, whose non-adjacent parts are �̅� and �̅�. By rule (b),  

cos c = sin �̅� sin �̅�, i.e., 

 cos c = cos a cos b. (8) 

This becomes obvious from the cosine rule (1), since γ = 90° and, thus,  

sin a sin b cos γ = 0. In the same way rule (a) for the adjacent parts α and β of c reads 

 cos c = cot α cot β; (9) 

here the cosine rule (3) gives cos γ = 0 = −cos α cos β + sin α sin β cos c; accordingly, 
division by sin α sin β yields (9). Napier’s rules say that (8) and (9) remain valid, if the 
circular parts undergo a cyclic permutation. In this way (8) gives cos β = sin α cos b. 

Formulas of this kind are well suited for logarithmic computation. For example, if 
one has read logtan α and logtan β from a table, −logcos c is just the sum of these 
numbers, by (9). Then the table yields c. 

All of the ten formulas that arise from (8) and (9) by cyclic permutation of the 
circular parts were known before Napier. This fact might give the impression that 

Napier’s rules are only mnemonic inventions that reduce ten formulas to two. This, 

however, is not true, as has been put straight in [7] and [2], p. 19 ff. Indeed, these rules 
result from a beautiful geometric configuration, which we shall present now. 



7 

For this purpose we need an additional notion of spherical trigonometry, which we 

explain by Figure 1. Let A be an arbitrary point on the celestial sphere. We extend the 

(arbitrarily chosen) arcs b and c of great circles through A both to a length of 90°. Then 

the arc B′C′ lies in a plane through the midpoint M of the sphere, which is at right angle 

to the line AM. The great circle lying in this plane is called the polar of A. If A is the north 
pole, say, its polar is the (celestial) equator. The angles at B′ and C′ are both equal to 90°. 

This can be seen from the example of the equator since each meridian intersects the 
equator at right angles. The polar of A may also be characterized by these right angles of 

intersection. Indeed, it is the great circle which is intersected by two great circles 
through A (which may be chosen arbitrarily) at right angles. 

In what follows we use Napier’s own configuration (see [8], Descriptio, p. 32), 

although we slightly modify his arguments. 

Since the earth is tiny relative to the celestial sphere, we may assume that the plane 

of the horizon goes through the center M of this sphere. This plane intersects the sphere 

in the circle of the horizon. Let BS be an arc of this circle and assume that the observer is 

in B and the sun in S. The meridian BP of the observer goes through the north pole P. 
The angle at B amounts to 90°. The arc PS is the meridian of the sun. If we extend the 

meridian PB beyond P by an arc of 90°, we arrive at the point D on the celestial equator. 
On the other hand, if we extend the meridian PS beyond S to a total of 90°, we arrive at 

the point F, which also lies on the equator. Hence the arc DF is part of the equator. By 

what we said above, the angles at D and F are right ones. What we have done for the 
point P, we can also do for S. We extend BS beyond S by a total of 90° and complement 

SP beyond P up to 90°. The arc CE that arises in this way is part of the polar of S, and the 
angles at C and E are again right ones. Altogether, we obtain a spherical pentagon 

OQZPS with right spherical triangles adjacent to its sides. 

 

 
 

Figure 3 
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It turns out that the circular parts of these five triangles are identical — up to cyclic 

permutations. We show this in the case of the triangles BSP and CPZ in an exemplary 

way. In the case of BSP these parts are 

90° − PB, 90° − BS, ∠ S, PS, ∠ P. 

For the triangle CPZ we have, accordingly, 

(10) 

90° − ZC, 90° − CP, ∠ P, PZ, ∠ Z. (11) 

The angle ∠ P is an obvious common part. Its “predecessor” in the triangle CPZ, namely, 
90° − CP, equals PS, since C arose by complementing PS to 90° . The “successor” of ∠ P in 
the second triangle is PZ. But BE is part of the polar of Z, since the angles at B and E are 
right ones — which characterizes the polar. Therefore, ZB = 90° and, thus, 
PZ = 90° − PB. Since BE is part of the polar of Z, the interior angle of the pentagon at the 
corner Z equals BE, as we explained in Section 1 by means of Figure 1. This interior 
angle amounts to 180° − ∠ Z; and since SE (the extension of BS) is 90°, we have  
90° −∠ Z = BS,  i.e., ∠ Z = 90 − BS. With similar considerations one shows that the interior 
angle at S of the pentagon is 90 − ZC = ∠ S .      

Accordingly, we have shown that the sequence (11) of circular parts has the form  
∠ S, PS, ∠ P, 90° − PB, 90° − BS. 

Hence the terms of the sequence (10) have been shifted to the right just by two 

positions. If we apply (8) — phrased for circular parts — to the hypotenuse of the first 
triangle, we obtain 

cos(PS) = sin(90° − PB) sin(90° − BS). 

The same procedure yields, for the second triangle, 

cos(90° − PB) = sin(∠ S) sin(PS). 

This, however, can be read as a statement about the first triangle in the sense of 
Napier’s rule (b). 

Of course, the two triangles just considered do not play a distinguished role, the 

geometry being the same for each other triangle. For instance, the arc CF is part of the 

polar of Q. This means that all of the five triangles have the same circular parts, 
however, in shifted positions. For instance, in the triangle DZQ these parts are shifted to 

the left by two positions, relative to those of CPZ. Therefore, each of (8) and (9) yields 
five formulas — which can be replaced by the rules (a) and (b). 

The diagram of Figure 3 was called Pentagramma mirificum by Gauss, i.e., 

“miraculous pentagram” (see [3], vol. 2, p. 12, footnote 4). However, it is not true that 
Napier’s rules have been theoretically established only by Gauss, as [13], p. 284, says. In 

fact, Napier’s idea (which had its predecessors, as can be seen from the said p. 12) 

remarkably connects geometrical intuition with practical organization. By the way, 
Napier enunciates his rules in the language of logarithms, as we said in connection with 
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(9). He is well aware of the practical value of his achievements, since he says that his 

rules help avoiding the confusion that arises from the natural determiners and their 

rules (see [8], Descriptio, p. 33). 

5. Half-angle formulas 

The Descriptio contains two theorems that allow the logarithmic solution of the case 
of three given sides of an arbitrary spherical triangle ABC. One of them can be 

enunciated as 

 , (12) 

where s = (a + b + c)/2. In accordance with Napier’s terminology we consider the 

side a as the “basis”, α as the “angle at the top” and b and c as the “legs” of the triangle 
(see Figure 1). Then his version of (12) reads — in our translation (see [8], Descriptio, p. 

47) — as follows: 

If one subtracts the sum of the logarithms of the legs from the sum of the logarithms of 
the aggregate and the difference of half of the basis and half of the difference of the legs, 
then what remains is twice the logarithm of half of the angle at the top. 

Here we have to observe that “logarithm” stands for logsin (see Section 3). 
Therefore, we must compute logsin b + logsin c and subtract this from the sum of 
logsin(a/2 + (b − c)/2) and logsin(a/2 − (b − c)/2) — the last-mentioned two sines have 
the “aggregate” and the difference of half of the basis and half of the difference of the 
legs as argument. This yields 2logsin(α/2) then. Of course, this procedure can easily be 
translated to formula (12). 

Napier’s proof of this formula is very short. From Regiomontanus’ cosine rule (6) 
(where we have chosen, in contrast with Regiomontanus and Napier, the radius R = 1), 

he deduces the proportion 

sin b sin c : 1 = (sinvers a – sinvers (b − c)) : sinvers α. 

The right hand side, however, behaves like 

sin(a/2 + (b − c)/2) sin(a/2 − (b − c)/2) : sin2(α/2), 

as he says. Whence the assertion follows. This rather scanty argument we may 
extend, on the one hand, by  
sinvers a−sinvers(b−c) = cos(b−c)−cos(a) = 2 sin(a/2+(b−c)/2) sin(a/2−(b−c)/2) 

an identity known at Napier’s time from prosthaphaeresis (see Section 2). On the 

other hand, one also knew                   sinvers α = 2 sin2(α/2), 

which completes the proof of Napier’s assertion. In the Descriptio we also find the 
analogue of (12) for the cosine, namely, 

 . (13) 
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From a computational point of view, both formulas are equivalent, since α is 

uniquely determined both by its sine and its cosine, because of 0° < α/2 < 90°. This may 

be a reason why Napier abstains from a proof of (13); he says only “quod alterius loci 

est demonstrare” (see [8], Descriptio, p. 48). Napier’s theorems (12) and (13) 

immediately give the formula 

 . (14) 

In modern textbooks about spherical trigonometry the formulas (12) to (14) are 

called “half-angle formulas” (see, for instance, [4] p. 188, [14], p. 20). Napier did not 
note the last of these half-angle formulas. 

6. Polar formulas 

The polar triangle is an important concept of spherical trigonometry. It is given by 

the polars of the corner points of the triangle ABC. In order to see this, we extend the 

sides c and b both to a total of 90°, with end points X, Y (see Figure 4). Then the great 
circle through X and Y is the polar of A. In the same way we obtain the polars of B and C. 

 

Figure 4 

The polar arcs arising in this way have A′, B′ and C′ as intersection points. By 

considerations analogous to those of Section 4, we find that the angle α′ equals 180° −a. 

To this end observe that a is part of the polar of A′, since the angles at Z and W are right 
ones. Because of CW = 90° and BZ = 90° we have WZ = 180° − a; and, by Section 1, α′ 

equals WZ. In a similar way we show a′ = B′C′ = 180° − α. In other words, the angles of the 
polar triangle are the supplements of the sides of the initial triangle, whereas the sides 

are the supplements of the angles. 

The cosine rule for sides, when applied to the polar triangle, turns into the cosine 

rule for angles, and conversely. Therefore, it suffices to prove one of these rules; the 
other — being the polar version thereof — follows automatically. The polar versions of 
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the half-angle formulas are called half-side formulas; for instance, (14) turns into the 

half-side formula 

                              (15) 

  where σ = (α + β + γ)/2 is half of the sum of the angles. Applying the logarithm to 
both sides of (15) allows the logarithmic treatment of the case of three given angles. 

This treatment follows the pattern of the case of three given sides in the foregoing 

section. Half-side formulas do not occur in Napier’s work, although the polar triangle 
was known at his time (see [3], vol. 1, pp. 182, 245). In fact, he uses polar concepts with 

the aim of transforming sides to angles and angles to sides, see [8], Descriptio, p. 55. 
Soon after Napier’s death Henry Gellibrand solved the case of three given angles by the 

application of (12) to the polar triangle (see [3], vol. 2, p. 29). 

7. Napier’s analogies 

One of Napier’s most remarkable achievements is contained in [8], Constructio, p. 

56, but without proof. It consists of two (of a total of four) so called “Napier’s analogies”. 

The first of these analogies reads, in modern terms, 

 . (16) 

Instead of the fraction on the right hand side of (16), Napier has the more 
complicated expression 

, 

which, however, amounts to the same if one applies the well known formula for the 
sine of a doubled angle to (α + β)/2 and (α − β)/2. Of course, Napier enunciates his 
result without formulas. 

There is no difficulty in applying (16) to the case of two given sides and an angle 

opposed to one of these sides, and the case of two given angles and a side opposed to 
one of these angles. So far we have been able to solve these cases only in a scarcely 

elegant way by means of a quadratic equation (see Section 1). For this purpose we need 

the spherical sine rule 

 , (17) 

which was known to Arabic astronomers around the year 1000. We can easily 
deduce this rule from Napier’s rules (see Section 4). To this end we subdivide the 

triangle ABC into two right triangles with the common leg h, the “height” of ABC. 
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Figure 5 

 

Indeed, Napier’s rule (b) gives, for the common circular part ℎ̅ = 90° − h of the right 
triangles, sin h = sin c sin β and sin h = sin b sin γ, whence (17) follows by elimination of 
sin h. 

Suppose now that a, b and α are given. Then the angle β can easily be computed from 
(17). One has to observe that β is, in general, not uniquely determined, since the 

supplement of β has the same sine. This ambiguity, however, is not a disadvantage, 
since (16) yields a solution c for each of these two values of β, which may correspond to 

the geometric reality. On the other hand, if a, α, and β are given, we determine the two 
possible values of b and apply (16) again. 

Napier himself does not mention this application of his rule, which is logarithmic 

throughout. In fact, he restricts himself to the logarithmic treatment of the case of two 
angles and the side adjacent to these. If c, α und β are given, the identity (16) yields only 

a + b. Napier’s second analogy 

 , (18) 

however, gives a−b, so both analogies together exhibit a and b. It is strange to say 

that the Constructio contains the second analogy basically in the form (18), whereas 

Napier did not see that his first analogy has an equally simple shape. Henry Briggs (see 
Section 3) wrote explanatory notes for the Constructio. He not only gave the simpler 

form (16) of the first analogy, but also the polar formulas for both analogies ([8], 
Constructio, p. 61). Thereby, the logarithmic treatment of the case of two given sides 

and the angle included by them becomes possible. But Briggs also did not give proofs. 
The first, though cumbersome, geometric proof can be found in Oughtred’s 

Trigonometria of 1657 (see [3], vol. 2, p. 42). Nowadays these analogies are usually 
proved in an analytic way that goes back to Euler (see, for instance, [14]). A relatively 

simple geometric proof for the polar formula of the first analogy can be found in [2], p. 
30 f. 
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8. Napier’s heritage 
Were Napier’s efforts worthwhile? Indeed, fifty years ago spherical trigonometry 

was a matter of logarithmic computations. Typically, one used a half-angle formula for 

the case of three given sides, a half-side formula for the case of three given angles, both 
analogies and their polar formulas for the cases of two given sides and the angle included 

by them or two given angles and the side adjacent to them, and, finally, one of the 
analogies and the sine rule in the remaining cases, see, e.g., [14], p. 25 ff., [12], p. 43, [13], 

p. 269 ff. Hence we may say: Up to recent times, applied spherical trigonometry 
consisted of theorems of Napier and their polar formulas (if we discard the sine rule). 

Over the centuries other aids have been found which render the same as Napier’s tools. 
But they do not really make the logarithmic computation simpler. 

In the age of computers most of the above cases can be solved by means of the two 
cosine rules. But in the case of two given sides and an angle opposed to one of them the 

analogy (16), combined with the sine rule, is still of value. This also holds for the case of 

two given angles and a side opposed to one of them. Other possible solutions hardly 

yield simpler formulas. For instance, if b, c, β, γ are given, the cosine rules (1) and (3) 
give a system of linear equations for cosa and cosα, which ends in the formula 

 ; (19) 

here the cosecant is the reciprocal of the sine, i.e., csc = 1/sin. Although it is not 
difficult to keep (19) in mind, it is certainly more complicated than each of Napier’s 

analogies. 

One should also mention that a number of problems in spherical astronomy lead to 
right spherical triangles, see [13], chap. 19. In this setting, Napier’s rules of Section 4 are 

still of value. 

9. A flaw in the Constructio 

The headline of the trigonometric section of the Constructio announces propositions 

for the solution of spherical triangles with wonderful ease (mira facilitate). In 
particular, the subdivision of triangles into right ones shall become avoidable 

(triangulum sphaericum resolvere absque eiusdem divisione in duo quadrantalia aut 
rectangula, see [8], Constructio, p. 50). This promise, however, is fulfilled on the first 

three pages of the said section only in a formal manner. In fact, the author subdivides 

the triangle in this way and applies his rules (of Section 4) — but without saying that 
the auxiliary triangles are right ones. Here the said rules are not disposable in their 

systematic form, i.e., Napier does not work with circular parts but, essentially, with all 
ten formulas for right triangles. These circumstances make it plausible that the said text 

dates from an early period of Napier’s research. Later half-angle theorems and Napier’s 
analogies make subdivisions of this kind superfluous. 

We discuss the last two examples of the first part of the said section (Examples 11 
and 12, p. 52): In Example 11, the side b and the angles α and γ of the triangle ABC are 
given, whereas c shall be found. As in Figure 5, the triangle is subdivided into two right 
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triangles with the common leg h. Napier computes the angle α′ between h and b by 
means of cos b = cot γ cot α′ (which is Napier’s rule (b)). Accordingly, he obtains the 
angle α′′ = α − α′ between h and c. Now the same rule gives cos α′ = cot h cot b and  
cos α′′ = cot h cot c. If one eliminates cot h in these equations, the relation tan = 1/cot 
yields the result, namely, tan c = cos α′  tan b/cos α′′. 

Napier also considers the case of h falling outside of the triangle, which means α′′ = 

α+α′. He enunciates his solution as a sort of recipe, in particular, without proof. It seems 
plausible, however, that the many cases of right triangles that occur in this example and 

the ten foregoing ones were a motive for Napier to develop his rules. 

In the subsequent Example 12 the setting is the same, so b, α and γ are given again. 

But now the angle β shall be found. Once Example 11 is solved, β could be computed by 

means of the sine rule (17), which, of course, was known to Napier (his Examples 3 and 
8 consist in applications of this rule). Napier was certainly aware of the fact that 

Example 12 is no more a great challenge. Surprisingly, his solution reads, in our 

terminology, 

 cos β = cos b/cot γ. (20) 

This is wrong, of course, since otherwise two determiners (namely, b and γ) would 

define the triangle, more precisely, the case of two given angles and a side opposed to 
one of them. In particular, α would be superfluous. The following is imaginable: Napier’s 

solutions of Examples 11 and 12 agree in the first two lines of the text. In Example 11, 

these two lines lead to the correct intermediate result 

 cot α′ = cos b/cot γ. (21) 

In Example 12, however, the false final result (20) turns up immediately. This 
suggests that Napier’s original solution of Example 12 had about the same length as that 

of Example 11; more precisely, that three or four lines between line 2 and line 3 (the 

line of (20)) have disappeared. The omitted lines may have contained the following 

instructions: 

Compute α′′ = α − α′ , then h by the rule cos α′ = cot b tan h, and, finally, cos β = cos h sin α′′. 

Lines number 3 and 4 (et proveniet sinus complementi anguli B, et inde ipse angulus B 
quaesitus.) may follow in their present form ([8], Constructio, p. 52). 

The beginnings of Examples 11 and 12 being identical, a lapse of the type setter 

seems to us more plausible than such a blunder of Napier (who was already dead when 
the Constructio was published). This lapse would have happened with the line break of 

proveniet, a word that may have been repeated at the end of the example — just as in 
Example 11. Possibly this lapse escaped the corrector’s attention because both 

Examples 11 and 12 have the same length in their present form. 

One may ask why Henry Briggs, whose valuable notes are enclosed, did not see this. 
Possibly, he did not read this part of Napier’s work thoroughly since it seemed to be of 
minor importance. In fact, his trigonometric comments all refer only to the subsequent 
section. Possibly, also, he wrote his commentary on the basis of a correct manuscript of 
Napier — which is no more existent. But these are mere conjectures. 
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This spoiled text was adopted, without any comment, by the English translation [9] 

of the Constructio from the 19th century. Since this translation is based on the editio 

princeps of 1619, it is clear that this flaw cannot be a consequence of the type setting of 

the edition [8] of 1620 which we are using. 

The translation [9] also contains a helpful catalogue of the printed editions of 

Napier’s work. 
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